Exercise 22

Compute Δy and $d y$ for the given values of x and $d x=\Delta x$. Then sketch a diagram like Figure 5 showing the line segments with lengths $d x, d y$, and Δy.

$$
y=e^{x}, \quad x=0, \quad \Delta x=0.5
$$

Solution

Compute the derivative of y.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(e^{x}\right) \\
& =e^{x}
\end{aligned}
$$

Consequently, the differential of $y=e^{x}$ is

$$
d y=e^{x} d x
$$

so when $x=0$ and $\Delta x=d x=0.5$,

$$
\begin{aligned}
& d y=e^{0}(0.5)=0.5 \\
& \Delta y=y(0+0.5)-y(0)=e^{0.5}-e^{0} \approx 0.648721
\end{aligned}
$$

The function is plotted below along with its tangent line at $x=0$.

